

BUSINESS UNDER PRESSURE

INCREASING EXPECTATIONS AND COMPETITION

LINE OF BUSINESS

Leverage applications to do business more efficiently

Deliver faster with low incremental cost

BUSINESS UNDER PRESSURE

INCREASING EXPECTATIONS AND COMPETITION

LINE OF BUSINESS

Leverage applications to do business more efficiently

Deliver faster with low incremental cost

DEVELOPERS

Deliver applications faster

Speed up coding and react on business requirements/changes quickly

BUSINESS UNDER PRESSURE

INCREASING EXPECTATIONS AND COMPETITION

LINE OF BUSINESS

Leverage applications to do business more efficiently

Deliver faster with low incremental cost

DEVELOPERS

Deliver applications faster

Speed up coding and react on business requirements/changes quickly

OPERATIONS

Provide reliable infrastructure ?! and platform

Beat public cloud providers in scalability, reliability, and cost

IT Must Evolve to Stay Ahead of Demands

Development Process

Waterfall

Application Architecture

Monolithic

Deployment & Packaging

Physical Servers

Application Infrastructure

Datacenter

IT Must Evolve to Stay Ahead of Demands

IT Must Evolve to Stay Ahead of Demands

Development Process

Waterfall

Agile

DevOps

Application Architecture

Monolithic

Microservices

Deployment & Packaging

Physical Servers

Virtual Servers

Containers

Application Infrastructure

Datacenter

Cloud

Middleware and Mobility Services

Containers

Platform-as-a-Service

Cloud Enabled Virtual Machines

Virtual Machines

Infrastructure-as-a-Service

Virtualization

Hybrid Management

Red Hat OpenShift, Two perspectives: DevOps tool & Container Platform

Red Hat Container Stack

Functional Layers, Container Technology and Red Hat Products

Building Blocks

Terms and Functions in the Container World - Let's be specific

CONTAINER PROCESS

CONTAINER IMAGE

CONTAINER HOST

REGISTRY

Walkthrough [- **Routing Layer** Node Node Node 00 00 00 Developer Pod Pod Pod Pod Pod MySQL Mactor Pod Pod Pod Pod Pod Pod Master **Persistent** SCM Storage (Git/Svn) RHEL/Atomic RHEL/Atomic RHEL/Atomic Node Node Node 00 00 Registry CI/CD -Pod Pod Scheduler Pod Pod 7. С js MySQL Management/Replication С Pod Pod Pod Pod Pod Management С Red Hat Enterprise Linux **Toolsets** MySQL RHEL/Atomic RHEL/Atomic RHEL/Atomic Service Layer Operations Private **Public Physical** Virtual

OpenShift runs on your choice of infrastructure

Nodes are instances of RHEL where apps will run

App services run in docker containers on each node

Pods run one or more docker containers as a unit

Masters leverage kubernetes to orchestrate nodes / apps

Master provides authenticated API for users & clients

Master uses etcd key-value data store for persistence

Master provides scheduler for pod placement on nodes

Pod placement is determined based on defined policy

Services allow related pods to connect to each other

Management/Replication controller manages the pod lifecycle

"Burn down"/replace affected deployments

OpenShift automatically recovers and deploys a new Pod

Pods can attach to shared storage for stateful services

Routing layer routes external app requests to pods

Developers access openShift via web, CLI or IDE

SECURITY for HOSTS, CONTAINERS & IMAGES

Aspects of Container Security

What you should care about:

- What base Image are you building on?
- Who built that? How quickly is that updated? Any SLA on patches?

Red Hat provides Container Image Scanning Technology

Is my container Host secure enough?

Strength of RHEL: Certifications, SLAs, Red Hat Experience, SELinux active!

How do I make sure my images are up-to date?

OpenShift automate Builds and Deployments

New Base image triggers a rebuild of top layers

Community Powered Innovation

Cloud Infrastructures

Choose your laaS

OpenShift will run anywhere RHEL can run giving you the ultimate portability for your mission critical workloads.

HOW DO I GET OPENSHIFT?

"I want to test how my app is running in OpenShift"

Openshift online - v2 (no docker), v3 avail this summer

"I am Red Hat Partner/Customer" and

- "I want to install my own OpenShift"
- "I want to test my containers in OpenShift"
 - Buy OpenShift Enterprise / Dedicated / Ask for eval
 - CDK container development kit (create 3 VMs, full cluster)

"I am not yet Red Hat Partner/Customer"

- Install OpenShift Origin https://www.openshift.org/ or
- All-in-1 VM https://www.openshift.org/vm/

OpenShift, Microsoft Azure and native. Net

- Red Hat and Microsoft partnership announced in Nov 2015
- Red Hat solutions are now fully certified and supported on Microsoft Azure, including RHEL, JBoss and OpenShift
- RHEL will be the primary development and reference operating system for .NET Core on Linux
- OpenShift will be providing a .NET runtime container image distributed and supported by Red Hat and Microsoft
- Build, deploy and run .NET applications on OpenShift
- Based on .NET Core 5
- Coming soon!

https://blog.openshift.com/open-source-power-microsoft-dotnet-openshift

SUMMARY

PaaS enables:

- Efficient agile development and satisfaction of business needs
- Automation and standardization of development process (Factory vs. Workshop)

Red Hat OpenShift is:

- Multi-platform PaaS with strong orientation on development cycle (DevOps)
- Container Platform for Runtime and Development of Container Workloads

Red Hat OpenShift provides:

- Container/host Security
- Automate building images and the whole container lifecycle
- Management
- Out-of-the-box Microservices architecture

OpenShift can run:

- On premise (Enterprise)
- In major public Clouds Azure, Amazon, Google.. (Dedicated, Online)

